
OpenMP for Intranode Programming

Barbara Chapman, University of Houston
Deepak Eachempati, University of Houston
Kelvin Li, IBM

http://www.cs.uh.edu/~hpctools

ATPESC, 08/06/2014

Agenda

q Morning: An Introduction to OpenMP 3.1

q Afternoon: Using OpenMP; Hybrid
Programming with MPI and OpenMP;
OpenMP 4.0

q Evening: Practical Programming

Morning Agenda

q  What is OpenMP?
q  The core elements of OpenMP 3.1

q  Parallel regions
q  Worksharing constructs
q  Synchronization
q  Managing the data environment
q  The runtime library and environment variables
q  Tasks

q  OpenMP usage
q  An example

3

High-End Systems: Architectural Changes
4

q  Massive increase in concurrency within nodes
q  Node architecture also changing

q  Growing core count, heterogeneity, memory size
& BW, power attributes, resilience

q  Reduced memory per core
q  Application codes need to exploit nodes fully
q  OpenMP can help

• Complex Digital ASIC Design • Activity 1 Case Study: Scalar vs. Vector Processors Activity 2

Course Motivation: Research Perspective





















        

     























































ECE 5950 Course Overview 18 / 35 Data$Processing$in$Exascale1class$Computing$Systems$$|$$April$27,$2011$$|$$CRM$4"

Three"Eras"of"Processor"Performance"

Single4Core""
Era"

S
in
gl
e1
th
re
ad
$$
Pe
rf
or
m
an
ce
$

?$

Time$

we#are#
here#

o"

Enabled$by:$
� �����
����	$
� Voltage$Scaling$
� MicroArchitecture$

$

Constrained$by:$
Power$
Complexity$

Multi4Core""
Era"

Th
ro
ug
hp
ut
$$
Pe
rf
or
m
an
ce
$

Time$
(##of#Processors)#

we#are#
here#

o"

Enabled$by:$
� �����
����	$
� DesireforThroughput$
� 20$years$ofSMParch$

$

Constrained$by:$
Power$
ParallelSWavailability$
Scalability$

Heterogeneous"
Systems"Era"

Ta
rg
et
ed
$A
pp
lic
at
io
n$
$

Pe
rf
or
m
an
ce
$

Time$
(Data1parallel#exploitation)#

we#are#
here#

o"

Enabled$by:$
� �����
����	$
� Abundant$data$parallelism$
� Power$efficient$GPUs$

$

Currently)constrained$by:$
Programming$models$
Communication$overheads$

The OpenMP API

q  High-level directive-based multithreaded programming
q  User makes strategic decisions; compiler figures out details
q  Shared memory model: Natural fit for shared memory (multicore)

platforms, now also heterogeneous systems
q  Can be used with MPI in Fortran, C, C++ programs to reduce

memory footprint, communication behavior of MPI code
q  Under active development

5

#pragma omp parallel
#pragma omp for schedule(dynamic)

 for (I=0;I<N;I++){
 NEAT_STUFF(I);
 } /* implicit barrier here */

OpenMP: Brief History

q  Initial version based upon shared memory parallel
directive standardization efforts in late 80s
q  PCF and aborted ANSI X3H5
q  Nobody fully implemented either of them
q  Proprietary directives in use for programming early

shared memory platforms
q  Oriented toward technical computing

q  Fortran, loop parallelism
q  Recent work has significantly extended scope of

original features

6

PCF – Parallel Computing Forum

What is OpenMP?

q De-facto standard API to write shared memory
parallel applications in C, C++, and Fortran
q  Recent features go beyond shared memory

q  Initial version released end of 1997
q  For Fortran only
q  Subsequent releases for C, C++

q Version 2.5 merged specs for all three
languages

q Version 3.1 released July 2011; 4.0 July 2013

7

http://www.openmp.org

OpenMP
4.0

The OpenMP ARB

q  OpenMP is maintained by the OpenMP Architecture
Review Board (the ARB), which
q  Interprets OpenMP
q  Writes new specifications - keeps OpenMP relevant
q  Works to increase the impact of OpenMP

q  Members are organizations - not individuals
q  Current members

q  Permanent: AMD, Convey Computer, Cray, Fujitsu, HP, IBM,
Intel, Microsoft, NEC, Nvidia, Oracle, Red Hat, St
Microelectronics, Texas Instruments

q  Auxiliary: ANL, BSC, cOMPunity, EPCC, NASA, LANL, ASC/
LLNL, ORNL, RWTH Aachen, SNL, TACC, University of
Houston www.openmp.org

OpenMP ARB 2013

10

How Does OpenMP Work?

q  OpenMP provides thread programming model at a “high

level”
q  Threads collaborate to perform the computation
q  They communicate by sharing variables
q  They synchronize to order accesses and prevent data conflicts
q  Structured programming is encouraged to reduce likelihood of bugs

q  Alternatives:
q  MPI
q  POSIX thread library is lower level
q  Automatic parallelization is higher level (user does nothing)

q  But usually successful on simple codes only

 11

User makes strategic decisions; Compiler figures out details

OpenMP 3.1 Components

12

•  Parallel region

•  Worksharing constructs

•  Tasking

•  Synchronization

•  Data-sharing attributes

•  Number of threads

•  Thread ID

•  Dynamic thread adjustment

•  Nested parallelism

•  Schedule

•  Active levels

•  Thread limit

•  Nesting level

•  Ancestor thread

•  Team size

•  Locking

•  Wallclock timer

•  Number of threads

•  Scheduling type

•  Dynamic thread
adjustment

•  Nested parallelism

•  Stacksize

•  Idle threads

•  Active levels

•  Thread limit

Directives Runtime library
Environment

variables

•  pragmas in C / C++

•  (specially written)
comments in Fortran

Role of User

q  User inserts directives telling compiler how
statements are to be executed
q  what parts of the program are parallel
q  how to assign code in parallel regions to threads
q  what data is private (local) to threads

q  User must remove any dependences in parallel parts
q  Or introduce appropriate synchronization

q  OpenMP compiler does not check for them!
q  It is up to programmer to ensure correctness
q  Some tools exist to help check this

How is OpenMP Compiled ?

q  Most Fortran/C compilers today implement
OpenMP

q  The user provides the required switch or switches
q  Sometimes this also needs a specific optimization level,

so manual should be consulted
q  May also need to set threads’ stacksize explicitly

q  Examples
q  Commercial: -openmp (Intel, Sun, NEC), -mp (SGI,

PathScale, PGI), --openmp (Lahey, Fujitsu), -qsmp=omp
(IBM) /openmp flag (Microsoft Visual Studio 2005), etc.

q  Freeware: gcc, Omni, OdinMP, OMPi, Open64.UH, (llvm)

14 Check information at http://www.openmp.org

OpenMP Usage

Fortran/C/C++
compiler

OpenMP
annotated

Source

Sequential
Program

Parallel
Program OpenMP compiler

sequential
compiler

q  If program is compiled sequentially
q  OpenMP comments and pragmas are ignored

q  If code is compiled for parallel execution
q  Pragmas drive translation into parallel program

q  Ideally, one source for sequential and parallel program (big
maintenance plus)

 OpenMP Parallel Computing Solution Stack

16

Pr
og

. L
ay

er

(O
pe

nM
P

A
PI

)

Compiler’s runtime library

OS/system

Directives,
Compiler OpenMP library

Environment
variables

Application

End User

Sy
st

em
 la

ye
r

U
se

r l
ay

er

Agenda

q  What is OpenMP?
q  The core elements of OpenMP

q  Parallel regions
q  Worksharing constructs
q  Synchronization
q  Managing the data environment
q  The runtime library and environment variables
q  Tasks

q  OpenMP usage
q  An example
q  Common programming errors
q  False sharing

17

OpenMP Fork-Join Execution Model

18

•  Execution starts with single thread (the initial / master thread)
•  Master thread spawns multiple worker threads as needed, together form

a team
•  Parallel region is a block of code executed by all threads in a team

simultaneously

Parallel Regions

Master thread

A Nested
Parallel
region

Worker thread

Barrier

Number of threads in a team may be dynamically adjusted

OpenMP Memory Model

n  OpenMP assumes a shared memory
n  Threads communicate by sharing variables.

n  Synchronization protects data conflicts.
q  Synchronization is expensive.

n  Change how data is accessed to minimize the need for synchronization.

19

Data-Sharing Attributes

q  In OpenMP code, data needs to be “labeled”
q There are two basic types:

q  Shared – there is only one instance of the data
q  Threads can read and write the data simultaneously

unless protected through a specific construct
q  All changes made are visible to all threads

–  But not necessarily immediately, unless enforced

q  Private - Each thread has a copy of the data
q  No other thread can access this data
q  Changes only visible to the thread owning the data

Data is shared by default

OpenMP Syntax
q  Most OpenMP constructs are compiler directives

q  For C and C++, they are pragmas with the form:
 #pragma omp construct [clause [clause]…]

q  For Fortran, the directives may have fixed or free form:
 *$OMP construct [clause [clause]…]
 C$OMP construct [clause [clause]…]

 !$OMP construct [clause [clause]…]
q  Include file and the OpenMP lib module

 #include <omp.h>
 use omp_lib

q  Most OpenMP constructs apply to a “structured block”.

q  A block of one or more statements with one point of entry at the top
and one point of exit at the bottom.

q  It’s OK to have an exit() within the structured block.

21
OpenMP sentinel forms: #pragma omp !$OMP

 sum = 0.0
!$omp parallel default(none) &
!$omp shared(n,x) private(i)
!$omp do reduction (+:sum)
 do i = 1, n
 sum = sum + x(i)
 end do
!$omp end do
!$omp end parallel
 print *,sum

Example - The Reduction Clause

Variable SUM
is a shared

variable

ü  The result is available after the parallel region
ü  The compiler generates optimized code that enables

threads to collaborate to perform the reduction
ü  The reduction can be hidden in a function call

reduction (operator: list) C/C++

Agenda

q  What is OpenMP?
q  The core elements of OpenMP

q  Parallel regions
q  Worksharing constructs
q  Synchronization
q  Managing the data environment
q  The runtime library and environment variables
q  Tasks

q  OpenMP usage
q  An example
q  Common programming errors
q  False sharing

23

Defining Parallelism In OpenMP

❑ A parallel region is a block of code executed by
all threads in a team simultaneously
q  Threads in team are numbered consecutively,

starting from 0; the master thread has thread ID 0
q  Thread adjustment (if enabled) is only done before

entering a parallel region
q  Parallel regions can be nested, but support for this

is implementation dependent
q  An "if" clause can be used to guard the parallel

region; if the condition evaluates to "false", the code
is executed serially

OpenMP Team := Master + Workers

q  Each thread calls pooh(ID,A) for ID = 0 to 3!

Parallel Regions
q  You create a team of threads in OpenMP with the

“omp parallel” pragma.
q  For example, to create a 4 thread parallel region:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

 int ID = omp_get_thread_num();
 pooh(ID,A);
}

Each thread
executes a
copy of the
code within

the
structured

block

Runtime function to
request a certain
number of threads

Runtime function
returning a thread ID

Parallel Regions

q  Each thread executes the
same code redundantly.

 double A[1000];
omp_set_num_threads(4);
 #pragma omp parallel
{

 int ID = omp_get_thread_num();
 pooh(ID, A);
}
 printf(“all done\n”); omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single
copy of A
is shared
between all
threads.

Threads wait here for all threads to
finish before proceeding (i.e. a barrier)

Parallel Regions and The “if” Clause
Active vs. inactive parallel regions.

q  An optional if clause causes the parallel region to be active
only if the logical expression within the clause evaluates to
true.

q  An if clause that evaluates to false causes the parallel region
to be inactive (i.e. executed by a team of size one).

double A[N];

#pragma omp parallel if(N>1000)
{

 int ID = omp_get_thread_num();
 pooh(ID,A);
}

A clause

Scope of OpenMP Region

28

lexical
extent of
parallel
region

C$OMP PARALLEL
 call whoami
C$OMP END PARALLEL

Dynamic extent
of parallel region
includes lexical
extent

subroutine whoami
 external omp_get_thread_num
 integer iam, omp_get_thread_num
 iam = omp_get_thread_num()
C$OMP CRITICAL
 print*,’Hello from ‘, iam
C$OMP END CRITICAL
 return
end

+

Orphaned directives
can appear outside a
parallel construct

bar.f
foo.f

q  A parallel region can span multiple source files.

A Multi-threaded “Hello world” Program

q  Each thread prints “hello world” in no specific order

#include “omp.h”
void main()
{

#pragma omp parallel
 {

 int ID = omp_get_thread_num();
 printf(“ hello(%d) ”, ID);
 printf(“ world(%d) \n”, ID);
 }

 }

Sample Output:

hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(2)

world(3)

OpenMP include file

Parallel region with default
number of threads

Runtime library function to
return a thread ID.

End of the parallel region

30

Example: The PI Program
Numerical Integration

∫ 4.0
(1+x2)

dx = π

0

1

∑ F(xi)Δx ≈ π
i = 0

N

Mathematically, we know that:

We can approximate the
integral as a sum of
rectangles:

Where each rectangle has
width Δx and height F(xi) at
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X 0.0

31

Pi Program: Sequential Version
#define NUMSTEPS 100000000
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) NUMSTEPS;

 for (i=1;i<= NUMSTEPS; i++) {
 x = (i-0.5)*step;
 sum += 4.0/(1.0+x*x);
 }
 pi = step * sum;

}

Get the exercise codes

32

$ wget http://www.cs.uh.edu/~dreachem/ATPESC14-omp-exercises.tar.gz

Download the exercises with:

$ runjob --block $COBALT_PARTNAME –p 1 –np 1 \
 --envs OMP_NUM_THREADS=8 : ./omp-program

To run an OpenMP program on 1 node with, e.g., 8 threads:

Exercise: Parallel Pi
Create a parallel version of the Pi program. Output
time and number of threads used, for small
numbers of threads.
n  Use the parallel construct. Pay close attention to

shared versus private variables.
n  In addition to a parallel construct, you should use

these runtime library routines:
q  int omp_get_num_threads();
q  void omp_set_num_threads();
q  int omp_get_thread_num();
q  double omp_get_wtime();

Get / set number of threads in
team

Get thread ID (rank)
Time in sec since fixed point
in past

34

Exercise: OpenMP Pi Program

#include <omp.h>
static long num_steps = 100000000;
double step;
#define NUM_THREADS 8
void main ()
{ int I, nthreads; double x, pi, sum[NUM_THREADS] ={0};

 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel
 { double x; int id, i, nthrds;

 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();

 if (id == 0) nthreads = nthrds;
 for (i=id;i< num_steps; i=i+nthrds) {
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);

 }
 }
 for(i=0, pi=0.0;i<nthreads; i++)pi += sum[i] * step;
}

SPMD: Each thread runs the same code. The
thread ID enables thread-specific behavior.

Promote scalar to
array so each
thread computes
local sum

Only one thread copies
value to global variable

Creates cyclic distribution
of iterations to threads

35

Comparison with MPI: Pi program
#include <mpi.h>
void main (int argc, char *argv[])
{

 int i, my_id, numprocs; double x, pi, step, sum = 0.0 ;
 step = 1.0/(double) num_steps ;

 MPI_Init(&argc, &argv) ;
 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;
 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
 my_steps = num_steps/numprocs ;
 for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++)
 {
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }
 sum *= step ;
 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

 MPI_COMM_WORLD) ;
}

OpenMP and MPI

Next Improvements:

-  more flexible

worksharing construct?

-  Optimize use of cache

Agenda

q  What is OpenMP?
q  The core elements of OpenMP

q  Parallel regions
q  Work-sharing constructs
q  Synchronization
q  Managing the data environment
q  The runtime library and environment variables
q  Tasks

q  OpenMP usage
q  An example

37

Worksharing Constructs

38

for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

#pragma omp parallel
{

 int id, i, Nthrds, istart, iend;
 id = omp_get_thread_num();
 Nthrds = omp_get_num_threads();
 istart = id * N / Nthrds;
 iend = (id+1) * N / Nthrds;
 for(i=istart;i<iend;i++) { a[i] = a[i] + b[i]; }

}

#pragma omp parallel
#pragma omp for schedule(static)

 for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
worksharing for
construct

OpenMP Worksharing Constructs
q  Divides the execution of the enclosed code region

among the members of the team
q  The “for” worksharing construct splits up loop iterations

among threads in a team
q  Each thread gets one or more “chunks”

39

 #pragma omp parallel
 #pragma omp for
 for (i = 0; i < N; i++) {

 work(i);
 } By default, all threads wait at a barrier at the end of

the “omp for”. Use the “nowait” clause to turn off
the barrier.

 #pragma omp for nowait

“nowait” is useful between two consecutive,
independent omp for loops.

omp do in Fortran

Example: OMP For
#pragma omp parallel default(none)\
 shared(n,a,b,c,d) private(i)
 {
 #pragma omp for nowait

 #pragma omp for nowait

 } /*-- End of parallel region --*/

(implied barrier)

for (i=0; i<n; i++)
 d[i] = 1.0/c[i];

for (i=0; i<n-1; i++)
 b[i] = (a[i] + a[i+1])/2;

Example: A Linked List

41

An Overview of OpenMP



RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Example - A Linked List

 while(my_pointer) {

 (void) do_independent_work (my_pointer);

 my_pointer = my_pointer->next ;

 } // End of while loop





Loops must be countable. To parallelize this loop,
it is necessary to first count the number of
iterations and then rewrite it as a for loop.
More on this later…

Loop Collapse
q  Allows parallelization of perfectly nested loops without

using nested parallelism
q  The collapse clause on for/do loop indicates how many

loops should be collapsed
q  The compiler forms a single loop and parallelizes it

42

!$omp parallel do collapse(2) ...
do i = il, iu, is
 do j = jl, ju, js
 do k = kl, ku, ks

 end do
 end do
end do
!$omp end parallel do

43

static Distribute iterations in blocks of size "chunk" over the
threads in a round-robin fashion

dynamic Fixed portions of work; size is controlled by the value of
chunk. When a thread finishes, it starts on the next portion of
work

guided Same dynamic behavior as "dynamic", but size of the portion
of work decreases exponentially

auto The compiler (or runtime system) decides what is best to use;
choice could be implementation dependent

runtime Iteration scheduling scheme is set at runtime via environment
variable OMP_SCHEDULE or runtime library call

OpenMP Schedule Clause

The schedule clause affects how loop iterations are mapped onto threads
schedule (static | dynamic | guided [, chunk])
schedule (auto | runtime)

Example Of a Static Schedule

A loop of length 16 using 4 threads

*) The precise distribution is implementation defined

Thread 0 1 2 3

no chunk * 1-4 5-8 9-12 13-16

chunk = 2 1-2 3-4 5-6 7-8

9-10 11-12 13-14 15-16

500 Iterations, 4 Threads

0 50 100 150 200 250 300 350 400 450 500

3
2

1

0

3
2

1

0

3
2

1

0

static

dynamic, 5

guided, 5

Iteration Number

Th
re

ad
 ID

Schedule
Clause

When To Use

STATIC Pre-determined and
predictable by the
programmer

DYNAMIC Unpredictable, highly
variable work per
iteration

GUIDED Special case of
dynamic to reduce
scheduling overhead

 The Schedule Clause

Least work at
runtime :
scheduling
done at
compile-time

Most work at
runtime :
complex
scheduling
logic used at
run-time

OpenMP Sections

q  Work-sharing construct
q  Gives a different structured block to each thread

47

#pragma omp parallel
#pragma omp sections
{
#pragma omp section

 x_calculation();
#pragma omp section

 y_calculation();
#pragma omp section

 z_calculation();
}

By default, there is a barrier at the end of the “omp sections”. Use the
“nowait” clause to turn off the barrier.

Example: Overlap I/O, Processing
#pragma omp parallel
#pragma omp sections

{
 #pragma omp section
 {
 for (int i=0; i<N; i++) {
 (void) read_input(i);
 (void) signal_read(i);
 }
 }
 #pragma omp section
 {
 for (int i=0; i<N; i++) {
 (void) wait_read(i);
 (void) process_data(i);
 (void) signal_processed(i);
 }
 }
 #pragma omp section
 {
 for (int i=0; i<N; i++) {
 (void) wait_processed(i);
 (void) write_output(i);
 }
 }
} /*-- End of parallel sections --*/

Processing Thread

Input Thread

Output Thread

Overlap I/O And Processing
Ti

m
e

Input	
 Thread Output	
 Thread

0
1 0
2 1 0
3 2 1
4 3 2
5 4 3

5 4
5

Proces s ing 	
 Thread(s)

OpenMP Master

q  Denotes a structured block executed by the master
thread

q  The other threads just skip it
q  no synchronization is implied

50

#pragma omp parallel private (tmp)
{

 do_many_things();
#pragma omp master

 { exchange_boundaries(); }
#pragma barrier

 do_many_other_things();
}

OpenMP Single

q Denotes a block of code that is executed by
only one thread.

q A barrier is implied at the end of the single
block.

51

#pragma omp parallel private (tmp)
{

 do_many_things();
#pragma omp single

 { exchange_boundaries(); }
 do_many_other_things();

}

Combined Parallel/Work-share

q  OpenMP shortcut: Put the “parallel” and
the work-share on the same line

 double res[MAX]; int i;
#pragma omp parallel
{
 #pragma omp for
 for (i=0;i< MAX; i++) {
 res[i] = huge();
 }
}

These are equivalent

 double res[MAX]; int i;
#pragma omp parallel for
 for (i=0;i< MAX; i++) {
 res[i] = huge();
 }

l  There’s also a “parallel sections” construct.

Orphaning

q  Recall: The OpenMP specification does not restrict worksharing
and synchronization directives (omp for, omp single, critical,
barrier, etc.) to be within the lexical extent of a parallel region.
These directives can be orphaned

q  They can appear outside the lexical extent of a parallel region

 :
#pragma omp parallel
{
 :
 (void) dowork();
 :
} // End of parallel
 :

void dowork()
{
 :
 #pragma omp for
 for (int i=0;i<n;i++)
 {
 :
 }
 :
}

orphaned
work-sharing

directive

More On Orphaning

q  When an orphaned worksharing or synchronization directive is
encountered in the sequential part of the program (outside the
dynamic extent of any parallel region), it is executed by the
master thread only. In effect, the directive will be ignored

(void) dowork(); !- Sequential FOR

#pragma omp parallel
{
 (void) dowork(); !- Parallel FOR
}

void dowork()
{
#pragma omp for
 for (i=0;....)
 {
 :
 }
}

55

Exercise 2:

n  Modify your program that uses numerical

integration to compute an estimate of PI.
n  This time, use a work-sharing construct
n  Remember, you’ll need to make sure multiple

threads don’t overwrite each other’s variables.

56

OpenMP “SPMD” PI Program

#include <omp.h>
static long num_steps = 100000;
double step;
#define NUM_THREADS 2
void main ()
{ int I, nthreads; double x, pi, sum[NUM_THREADS] ={0};

 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel
 { double x; int id, i, nthrds;

 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();

 if (id == 0) nthreads = nthrds;
 for (i=id;i< num_steps; i=i+nthrds) {
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);

 }
 }
 for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i] * step;
}

SPMD: Each thread runs the same code. The
thread ID enables thread-specific behavior.

Promote scalar so
each thread
computes own
portion of result

To avoid data race, one
thread copies value to
global variable

Creates cyclic distribution
of iterations to threads

57

Exercise: OpenMP PI Program, v2
 #include <omp.h>

static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum[NUM_THREADS] ={0.0};

 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel
 { double x; int i, id;

 id = omp_get_thread_num();
#pragma omp for

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);
 }

 }
 for(i=0, pi=0.0;i<NUM_THREADS;i++)pi += sum[i] * step;
}

58

OpenMP PI Program with Reduction

#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

#pragma omp parallel for reduction(+:sum) private(x)

 for (i=1;i<= num_steps; i++){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}
OpenMP adds

1-2 lines of code

#include <stdlib.h>
#include <sys/time.h>
…

void * compute_pi(void *dat)
{
 int threadid = ((thr_data_t*)dat)->threadid;
 int num_threads = ((thr_data_t*)dat)->num_threads;
 int num_steps = ((thr_data_t*)dat)->num_steps;
 pthread_mutex_t *mtx = ((thr_data_t*)dat)->mtx;
 double *sump = ((thr_data_t*)dat)->sump;
 int i;
 double step;
 double x, local_sum;

 step = 1.0 / num_steps;

 local_sum = 0.0;
 /* round robin distribution of iterations */
 for (i = threadid; i < num_steps; i += num_threads) {
 x = (i - 0.5)*step;
 local_sum += 4.0 / (1.0 + x*x);
 }

 pthread_mutex_lock(mtx);
 *sump = *sump + local_sum;
 pthread_mutex_unlock(mtx);
 return NULL;
}

59

POSIX Threads, Pi Calculation
int main(int argc, char **argv)
{
…

 /* start pi calculation */
 threads = malloc(num_threads * sizeof *threads);
 step = 1.0 / num_steps;
 pthread_mutex_init(&mtx, NULL);

 /* spawn threads to work on computing pi */
 for (i = 0; i < num_threads; i++) {
 dat[i].threadid = i;
 dat[i].num_threads = num_threads;
 dat[i].num_steps = num_steps;
 dat[i].mtx = &mtx;
 dat[i].sump = ∑
 pthread_create(&threads[i], NULL, compute_pi,
 (void *)&dat[i]);
 }
 /* join threads */
 for (i = 0; i < num_threads; i++) {
 pthread_join(threads[i], NULL);
 }
 pi = step * sum;
 free(dat);
 pthread_mutex_destroy(&mtx);
 free(threads);
…
}

Requires explicit thread/data management

OpenMP and MPI

Agenda

q  What is OpenMP?
q  The core elements of OpenMP

q  Parallel regions
q  Work-sharing constructs
q  Synchronization
q  Managing the data environment
q  The runtime library and environment variables
q  Tasks

q  OpenMP usage
q  An example

61

OpenMP Synchronization
q  Synchronization enables the user to

q  Control the ordering of executions in different threads
q  Ensure that at most one thread executes operation or

region of code at any given time (mutual exclusion)

q  High level synchronization:
q  barrier
q  critical section
q  Atomic
q  ordered

q  Low level synchronization:
q  flush
q  locks (both simple and nested)

62

Barrier
When	
 these	
 loops	
 are	
 parallelized,	
 we	
 need	
 to	
 be	
 sure	
 to	

update	
 all	
 of	
 a[
]	
 before	
 using	
 a[
]	
 *	

All threads wait at the barrier point and only continue when all
threads have reached the barrier point

*) If the mapping of iterations onto threads is guaranteed to be
identical for both loops, we do not need to wait. This is the case
with the static schedule under certain conditions

wait !
barrier

for (i=0; i < N; i++)
 a[i] = b[i] + c[i];

for (i=0; i < N; i++)
 d[i] = a[i] + b[i];

Barrier

time

Barrier Region

idle

idle

idle

!$omp barrier #pragma omp barrier

Barrier syntax in OpenMP:

Barrier: Explicit and Implicit
q  Each thread waits until all threads arrive.

65

#pragma omp parallel shared (A, B, C) private(id)
{

 id=omp_get_thread_num();
 A[id] = big_calc1(id);

#pragma omp barrier
#pragma omp for

 for(i=0;i<N;i++){C[i]=big_calc3(I,A);}
#pragma omp for nowait

 for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }
 A[id] = big_calc3(id);

} implicit barrier at the end
of a parallel region

implicit barrier at the
end of a for work-
sharing construct

no implicit barrier
due to nowait

The Nowait Clause

q  Barriers are implied at end of parallel region,
for/do, sections and single constructs

q  Barrier can be suppressed by using the
optional nowait clause

q  If present, threads do not synchronize/wait at the
end of that particular construct

!$omp do
 :
 :
!$omp end do nowait

#pragma omp for nowait
{
 :
}

Mutual Exclusion

q  Code may only be executed by at most one thread
at any given time

q  Could lead to long wait times for other threads
q  Atomic updates for individual operations
q  Critical regions and locks for structured regions of

code

time

critical region

Critical Region (Section)
q  Only one thread at a time can enter a critical

region

68

float res;

#pragma omp parallel

{ float B; int i;

 #pragma omp for
 for(i=0;i<niters;i++){

 B = big_job(i);

#pragma omp critical
 consume (B, RES);

 }
}

Threads wait
their turn – only
one at a time
calls
consume()

Use e.g. when all threads update a variable and the order in
which they do so is unimportant. Preserves data integrity.

Atomic

q  Atomic is a special case of
mutual exclusion

q  It applies only to the update
of a memory location

69

C$OMP PARALLEL PRIVATE(B)
 B = DOIT(I)

 tmp = big_ugly();

 C$OMP ATOMIC
 X = X + temp

C$OMP END PARALLEL

The statement inside the
atomic must be one of:
 x binop= expr
 x = x binop expr
 x = expr binop x
 x++
 ++x
 x—
 --x
X is an lvalue of scalar type
and binop is a non-
overloaded built in operator.

OpenMP 3.1 describes the behavior
in more detail via these clauses:

read, write, update, capture

The pre-3.1 atomic construct is
equivalent to
#pragma omp atomic update

Ordered

q  The ordered construct enforces the sequential
order for a block.

q  Code is executed in order in which iterations
would be performed sequentially

70

#pragma omp parallel private (tmp)
#pragma omp for ordered
for (i=0;i<N;i++){
 tmp = NEAT_STUFF(i);
#pragma ordered
 res += consum(tmp);
}

Updates to Shared Data

q  Blocks of data are fetched into cache lines
q  Values may temporarily differ from other copies of

data within a parallel region

71

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

a

a

a

Updates to Shared Data

X = 0 while (X == 0)
{
 “wait”
}

X = 1

Thread A Thread B

If shared variable X is kept within a register, the
modification may not be immediately visible to the

other thread(s)

The Flush Directive

q  Flushing is what creates a consistent view of shared
data: it causes a thread to write data back to main
memory and retrieve new values of updated variables

q  It is automatically performed on a number of constructs
q  The flush construct allows the programmer to define a

point where a thread makes its variable values
consistent with main memory
q  Caution: it does not enable a thread to retrieve values updated

by another thread unless that thread also performs a flush
q  It also does not synchronize threads
q  Its use is tricky: be sure you understand it

73

The Flush Directive

q  Flush also enforces an ordering of memory operations
q  When the flush construct is encountered by a thread

q  All memory operations (both reads and writes) defined
prior to the sequence point must complete.

q  All memory operations (both reads and writes) defined
after the sequence point must follow the flush.

q  Variables in registers or write buffers must be updated in
memory.

q  Arguments to flush specify which variables are flushed.
q  If no arguments are specified, all thread visible

variables are flushed.

74 Use of flush with explicit variables strongly discouraged

What Else Does Flush Influence?

Compilers reorder instructions to better exploit the functional
units and keep the machine busy
q  Flush prevents the compiler from doing the following:

q  Reorder read/writes of variables in a flush set relative to a flush.
q  Reorder flush constructs when flush sets overlap.

q  A compiler CAN do the following:
q  Reorder instructions NOT involving variables in the flush set relative

to the flush.
q  Reorder flush constructs that don’t have overlapping flush sets.

75

The flush operation does not
actually synchronize different
threads. It just ensures that a
thread’s values are made consistent
with main memory.

A Flush Example

76

Pair-wise synchronization.

 integer ISYNC(NUM_THREADS)
C$OMP PARALLEL DEFAULT (PRIVATE) SHARED (ISYNC)

 IAM = OMP_GET_THREAD_NUM()
 ISYNC(IAM) = 0

C$OMP BARRIER
 CALL WORK()
 ISYNC(IAM) = 1 ! I’m done; signal this to other threads

C$OMP FLUSH(ISYNC)
 DO WHILE (ISYNC(NEIGHBOR) .EQ. 0)

C$OMP FLUSH(ISYNC)
 END DO

C$OMP END PARALLEL

Make sure other threads can
see my write.

Make sure the read picks up a
good copy from memory.

Implied Flush
Flushes are implicitly performed during execution:
q  In a barrier region
q  At exit from worksharing regions, unless a nowait is present
q  At entry to and exit from parallel, critical, ordered and parallel

worksharing regions
q  During omp_set_lock and omp_unset_lock regions

q  During omp_test_lock, omp_set_nest_lock, omp_unset _nest_lock and
omp_test_nest_lock regions, if the region causes the lock to be set or unset

q  Immediately before and after every task scheduling point
q  At entry to and exit from atomic regions, where the list contains

only the variable updated in the atomic construct
q  But not on entry to a worksharing region, or entry to/exit from a

master region,

